Mola mola (Pez Luna)

El pez luna (Mola mola) es un pez pelágico tetraodontiforme de la familia Molidae. Es el mayor pez óseo del mundo, con una media de 1.000 kg de peso y con ejemplares que alcanzan más de 3 m de longitud y superan las 2 toneladas. Es una especie cosmopolita que habita en aguas tropicales y templadas a lo largo de todo el planeta. Tiene el cuerpo aplastado lateralmente y cuando extiende sus aletas dorsales y ventrales, el pez es tan largo como alto.
Alimentación
Se alimenta principalmente de varios tipos de zooplancton gelatinoso como las medusas, de las que consume grandes cantidades para poder desarrollarse y mantener su gran tamaño, puesto que es una dieta pobre en nutrientes.
Reproducción
Las hembras de esta especie pueden producir hasta 300 millones de huevos, más que cualquier otro vertebrado conocido. Los alevines del pez luna parecen pequeños peces globo con grandes aletas pectorales, una aleta caudal y espinas corporales que no tienen los ejemplares adultos.

Los ejemplares adultos son vulnerables a pocos depredadores naturales, pero es presa de leones marinos, orcas y tiburones. Entre los humanos, su carne está considerada como una exquisitez en algunas partes del mundo, como Japón, Corea y Taiwán, pero la venta de su carne está prohibida en la Unión Europea. A menudo estos peces quedan accidentalmente atrapados en redes de pesca y también pueden dañarse o morir debido a encuentros con desechos flotantes, como bolsas de plástico.

El pez luna es miembro del orden de los Tetraodontiformes, estuvo incluido en el mismo género que los peces globos pero estudios posteriores se clasidicó en un género propio.

Orchis papilionacea

Orchis papilionacea

Hábitat

Se distribuye por la Europa mediterránea. La podemos encontrar en prados, matorrales y bosques no muy tupidos, en todo tipo de terrenos aunque prefiere los de tendencia calcárea, a la luz solar directa ó media sombra.

Descripción

Tubérculos subglobosos, subsentados. Tallos de 20-40 cm, erectos, rodeados en la base por vainas foliares escariosas. Hojas de lanceoladas a linear-lanceoladas, ligeramente mucronadas. Inflorescencia con 4-10 flores, ovoidea, laxa. Brácteas de 2,5-5 cm, lanceoladas, plurinervadas, más largas que el ovario, púrpura claro. Flores grandes purpúreas. Tépalos convergentes formando una gálea; los externos laterales de 13-18 (-25) mm, ovado-lanceolados, asimétricos, plurinervados. Lihelo de (18-) 20-25 (-27) x 16-25 mm, entero, de suborbicular a ampliamente obovado, plano, con margen crenulado-dentado; espolón de aproximadamente la mitad de la longitud del ovario, cilíndrico, reflejo. 2n = 32. Florece de Marzo a Mayo. La de la foto que está encima de esta información fue tomada en Málaga por FJCM.

Usos medicinales

La harina de sus tubérculos llamada salep es muy nutritiva y demulcente. Se usa en dietas especiales de convalecientes y niños. Es muy rica en mucílago y forma una demulcente y suave gelatina que se usa para el canal gastrointestinal irritado. Una parte de harina con cincuenta partes de agua son suficientes para formar la gelatina. El tubérculo para preparar la harina debe ser recolectado cuando la planta está recién seca después de la floración y cuando ha soltado las semillas.

El salep es muy popular en Turquía, pero debemos tener en cuenta que es una especie poco abundante, por lo que no debe recolectarse bajo ningún concepto.

Primeros Resultados de la Secuenciación del Genoma de la Fresa Silvestre

Un consorcio internacional de investigación, formado por 75 investigadores provenientes de 38 instituciones, ha secuenciado el genoma de la fresa silvestre. Se espera que su análisis detallado permita la obtención de variedades más resistentes y sabrosas de esta fruta y otras de su familia.

Desde el punto de vista genético, la fresa silvestre (Fragaria vesca), es similar a la fresa cultivada pero menos compleja, lo que facilita su estudio por los científicos. Su cromosoma-14 posee uno de los genomas más pequeños de los vegetales económicamente importantes, pero aún así contiene aproximadamente 240 millones de pares de bases.

El consorcio que ha secuenciado el genoma incluye a dos investigadores del Instituto Tecnológico de Georgia (Mark Borodovsky y Paul Burns). El director del consorcio es Kevin Folta, profesor en el Instituto de Alimentación y Ciencias Agrarias de la Universidad de Florida.

Cuando el consorcio obtuvo la secuencia genómica de la fresa silvestre, Borodovsky y Burns trabajaron para identificar los genes codificadores de proteínas en la secuencia. Mediante un innovador programa de reconocimiento de patrones, llamado GeneMark.hmm-ES+, Borodovsky y Burns identificaron 34.809 genes, de los cuales el 55 por ciento fueron asignados a familias de genes.

Un análisis del genoma de la fresa silvestre ha revelado que ciertos genes están implicados en procesos biológicos fundamentales, como por ejemplo el proceso responsable del sabor de la fruta, el que produce la floración, y el de la reacción del sistema inmunitario ante infecciones.

A largo plazo, los agricultores podrán utilizar la información genética de la fresa silvestre para obtener plantas que puedan ser cultivadas con menores requerimientos y un mayor rendimiento.

Revelan la Estructura de una Proteína Que Permitirá Conocer Mejor a unas Enzimas Cruciales Para la Vida

Por primera vez, unos investigadores han caracterizado la estructura de una proteína que pertenece a ciertas enzimas que son esenciales para el funcionamiento apropiado de todas las formas de vida, desde la levadura hasta los humanos.
Las enzimas, que pertenecen a la familia Sac, participan en la señalización celular y en el tráfico a través de membranas.
Los científicos han descubierto que cuando no está presente el gen que expresa las enzimas Sac en los animales, estos mueren, y las mutaciones de genes relacionados en humanos conducen al cáncer y a ciertas enfermedades neurodegenerativas hereditarias.
Los investigadores, del Instituto Weill de Biología Celular y Molecular de la Universidad Cornell, han caracterizado por primera vez la estructura cristalina de la proteína Sac1 en la levadura.
La levadura sirve como organismo modelo para todas las células; la mayoría de los 6.000 genes en la levadura se encuentra también en los humanos. La proteína Sac1 en la levadura es una progenitora de otras proteínas Sac relacionadas, también existentes en vegetales y animales.
Entender la estructura de la proteína Sac1 abre el camino hacia la realización de experimentos que pueden revelar cómo estas enzimas fundamentales interactúan con las membranas celulares para posibilitar procesos celulares esenciales, lo cual podría conducir a fármacos que actúen de manera específica sobre enfermedades relacionadas.
La enzima fue descubierta por primera vez en 1989, pero nadie había visto la estructura atómica de esta proteína. Otros científicos lo habían intentado, pero ésta es la primera vez que esa estructura ha sido desvelada.

Sistema Nervioso de Los Delfines

Los delfines como cualquier otro mamífero tiene un sistema nervioso normal, el mismo que cualquier mamífero pero con algunas diferencias.
A medida que avanzamos dentro de la clase hacia especies más evolucionadas, la corteza cerebral o substancia gris, considerada la parte noble del cerebro incrementa su volumen, a la vez que lo hace el número y complejidad de sus circunvoluciones. El volumen del cerebelo es también mayor en los mamíferos.La actividad psíquica de los mamíferos es muy superior a la del resto de los anmales, y en las especies más evolucionadas se aprecian rasgos de memoria e incluso de inteligencia.

El Sistema Nervioso se divide en:
– Sistema Nervioso Central (SNC): está constituido por el encéfalo y la médula espinal. Están protegidos por tres membranas: duramadre (membrana externa), aracnoides (membrana intermedia), piamadre (membrana interna) denominadas genéricamente meninges. Además, el encéfalo y la médula espinal están protegidos por envolturas óseas, que son el cráneo y la columna vertebral respectivamente.
Las cavidades de estos órganos están llenos de un líquido incoloro y transparente, que recibe el nombre de líquido cefalorraquídeo. Sus funciones son muy variadas: sirve como medio de intercambio de determinadas sustancias, como sistema de eliminación de productos residuales, para mantener el equilibrio iónico adecuado y como sistema amortiguador mecánico.
Las células que forman el sistema nervioso central se disponen de tal manera que dan lugar a dos formaciones muy características: la sustancia gris, constituida por los cuerpos neuronales, y la sustancia blanca, formada principalmente por las prolongaciones nerviosas (dendritas y axones), cuya función es conducir la información. En resumen, el sistema nervioso central es el encargado de recibir y procesar las sensaciones recogidas por los diferentes sentidos y de transmitir las órdenes de respuesta de forma precisa a los distintos efectores. Y se puede decir que el sistema nervioso central es uno de los más importantes de todos los sistemas que se encuentra en nuestro cuerpo.
– Sistema Nervios Periférico (SNP): es el sistema nervioso formado por nervios y neuronas que residen o extienden fuera del sistema nervioso central, hacia los miembros y órganos. La diferencia con el sistema nervioso central está en que el sistema nervioso periférico no está protegido por huesos o por barrera hematoencefálica, permitiendo la exposición a toxinas y a daños mecánicos. Es el que coordina, regula e integra nuestros órganos internos, por medio de respuestas inconscientes. Se subdivide en:

  • Sistema nervioso somático: Activa todas las funciones orgánicas (es activo).
  • Sistema nervioso autónomo o vegetativo: Protege y modera el gasto de energía. Está formado por miles de millones de largas neuronas, muchas agrupadas en nervios. Sirve para transmitir impulsos nerviosos entre el S.N.C y otras áreas del cuerpo.
  • Nervios periféricos: Tienen tres capas: endoneuro, perineuro y epineuro.

Familia Poaceae (Gramíneas)

FAMILIA GRAMINEAS (GRAMINEAE O POACEAE)

  • Mayoría de plantas herbáceas, anuales o perennes. A menudo provistas de rizomas (tallo subterráneo)  o estolones (brote que nace de la base de los tallos originando ramas horizontales y que enraizando y muriendo da nuevos individuos).
  • Familia cosmopolita.
  • Tallos: cilíndricos, nudosos, con entrenudos huecos.
  • Hojas: alternas, sin estípulas. Provistas de una vaina abierta o cerrada que abraza al tallo y de un limbo largo con nervios paralelos. En la unión entre la vaina y el limbo presenta una lígula.
  • Flores: hermafroditas, pequeñas y poco vistosas. Se reúnen en inflorescencias de tipo espiguilla y también en inflorescencia complejas.
    • Cáliz: no presenta.
    • Corola: no presenta.
    • Formada: por 2 brácteas llamadas glumillas o glumelas:
      • la inferior llamada lema. En las lemas pueden llevar una arista en el ápice o en el dorso.
      • La superior llamada pálea. Queda oculta en el interior de la inferior.
  • Androceo: generalmente 3. Estambres de filamentos libres, largos y delgados.
  • Gineceo: ovario súpero formado por 2 carpelos (raro por 3) soldados en un ovario.
  • Fruto: cariópside.
  • Especies típicas: (haz click en el nombre de la planta para ver la imagen)

Poa annua
Sorghum halepense
Hordeum vulgare
Bambusa vulgaris
Zea mays

Resuelven el Misterio de la Proliferación Tropical de las Plantas C4

Hace entre 30 y 40 millones de años aproximadamente, una clase de plantas en la Tierra experimentó una gran agitación evolutiva y, aprovechándose de los niveles descendentes del dióxido de carbono atmosférico que situaban en desventaja a sus competidoras, se valió de un mecanismo interno para concentrar el decreciente suministro de CO2. Esta concentración, como si fuese un sistema de inyección de combustible en un automóvil, podía convertir con más eficiencia la luz solar y los nutrientes en energía.

El auge de las plantas C4 es irrefutable. Dominan los climas cálidos tropicales y ahora representan el 20 por ciento de la vegetación que cubre nuestro planeta. Los científicos han atribuido el auge de las plantas C4 principalmente a las concentraciones ambientales decrecientes de dióxido de carbono (CO2). Sin embargo, las plantas C4 han estado estrechamente vinculadas a temperaturas cálidas. De hecho, cuando se examina la población vegetal del mundo en un mapa, las plantas C4 están a lo largo del gradiente tropical, mientras que las plantas C3 ocupan el extremo frío del gradiente de temperatura.

Erika Edwards, bióloga evolutiva en la Universidad Brown, y Stephen Smith, del Centro Nacional de Síntesis Evolutiva en Carolina del Norte, han descubierto que las precipitaciones, y no la temperatura, fueron el activador principal del camino evolutivo de las plantas C4.

El estudio es interesante debido a que parece demostrar la importancia de las precipitaciones en la evolución de las plantas herbáceas y en particular de las plantas C4, específicamente, su movimiento hacia climas más secos y no necesariamente más cálidos.

Así que, ¿las plantas C4 evolucionaron en la selva tropical y luego salieron de los terrenos sometidos a la sombra de los árboles, o primero salieron de tales terrenos y luego adoptaron una vía fotosintética diferente? Edwards no está segura, pero piensa que la cadena de acontecimientos pudo iniciarse quizá con la formación de plantas C3 en los márgenes de la selva, donde dichas plantas habrían estado sujetas a mayores fluctuaciones en las precipitaciones, la luz solar, las temperaturas y otras presiones medioambientales, lo cual las habría forzado a evolucionar hacia esa innovación fotosintética.

Lo que todo eso implica para el futuro de las plantas C4 y el cambio climático es un misterio. Mientras que las plantas herbáceas presumiblemente se beneficiarían de los promedios inferiores de lluvia que han sido pronosticados para algunas áreas de los trópicos, podrían volverse menos competitivas por culpa de los niveles crecientes de CO2 atmosférico. También se necesitaría considerar los efectos de los cambios en la tierra por la deforestación y otras prácticas.