Posts Tagged ‘virus’

Desvelan la Estructura Tridimensional de un Virus Con Potencial Anticáncer y Anti-VIH

El virus de la estomatitis vesicular ha sido durante mucho tiempo un sistema modelo para estudiar y entender el ciclo de vida de cierta clase de virus, que incluye a los virus que causan la gripe, el sarampión y la rabia.

Una investigación ha mostrado ahora que el virus de la estomatitis vesicular (o VSV por sus siglas en inglés) tiene el potencial de ser modificado genéticamente para servir como un agente anticáncer, poseyendo una alta selectividad para matar células cancerosas sin hacerlo con las sanas, y como una potente vacuna contra el VIH.

Para lograr tales modificaciones, sin embargo, los científicos deben poseer una imagen precisa de la estructura del virus. A pesar de que durante décadas se ha intentado obtener una información estructural tridimensional lo bastante detallada y fiable de la característica forma de proyectil del VSV y su proceso de ensamblaje, los intentos han sido obstaculizados por limitaciones tecnológicas y metodológicas.

Ahora, un equipo de investigadores del Instituto de NanoSistemas de California y del Departamento de Microbiología, Inmunología y Genética Molecular, ambos de la Universidad de California en Los Ángeles, y otros expertos, no sólo han revelado la estructura 3D de la sección del tronco del VSV, sino que han deducido la organización arquitectónica de todo el virión mediante microscopía crioelectrónica y el uso integrado de métodos de procesamiento de imágenes.

El nuevo estudio proporciona la primera visualización directa de las proteínas N y M dentro del virión del VSV a una resolución de 10,6 angstroms.

Sorprendentemente, los nuevos datos demuestran de manera clara que el VSV es una partícula muy ordenada, donde la nucleocápside, en vez de rodear una matriz de proteínas M, está rodeada por ésta.

Este trabajo incrementa de modo crucial el conocimiento científico de la biología de esta extensa y médicamente importante clase de virus.

Lo descubierto en este estudio podría conducir a avances en el desarrollo de vacunas basadas en el VSV para el VIH y otros virus mortales, según cree el equipo de investigación.

Por último, cabe citar una inesperada curiosidad señalada por Peng Ge, miembro del equipo de investigación: La secuencia en el ensamblaje proteico y de las moléculas de ARN virales dentro del virus parece rimar con los primeros compases de la sonata para piano en Do Mayor, K.545, de Mozart.

Anuncios

Virus

Como método para comprender como funcionan las células procariotas y eucariotas.
Los virus sólo pudieron ser visualizados cuando se descubrió el microscopio electrónico. Pueden tener entre 3 y 4 genes y es capaz de controlar la maquinaria celular para crear más virus.

• Bacteriofagos: virus que infectan exclusivamente bacterias.
• Virus animales: virus que infectan animales.
• Virus vegetales: virus que infectan a vegetales.
Cuando el virus está fuera de la célula se denomina virión, consta de material genético ADN o ARN de cadena doble o simple, normalmente envuelto dentro de una cápside proteica y una bicapa lipídica llamada envoltura vírica rodeada de glicoproteínas.

VIH el provirus contiene 9 genes. Tres de ellos codifican para proteínas estructurales comunes a todos los retrovirus (los genes gag, pol y env), siendo los seis restantes genes no estructurales, que codifican para dos proteínas reguladoras (genes tat y rev) y cuatro para proteínas accesorias (genes vpu, vpr, vif y nef).

1. Ciclo de vida.

Un virión llega a la célula, penetra en ella libera el material genético es replicado y transcrito por la transcriptasa.
Se introduce en el ADN de la célula y se traduce en el citoplasma por ribosomas que generan distintas proteínas por ejemplo de la cápside.
Se autoensamblan y engloban ARN que esté suelto para formar los futuros viriones.
Las glicoproteínas de la envuelta vírica se forma por el RE y se manda a la membrana plasmática a través de la vía secretora, las glicoproteínas se quedan fuera de la membrana plasmática, la cápside se acerca a la membrana plasmática y se evagina el virión utilizando la membrana plasmática de la célula como envoltura vírica.

2. Entrada del virus.

1. Virus envueltos como el virus del Sida es un virus clásico con glicoproteínas reconocidas por la membrana plasmática de la célula y libera su contenido al citosol.
2. Otros virus envueltos, como el virus de gripe, se une a receptores superficiales de la célula, provocando una endocitosis. Cuando el endosoma se acidifica, el virus se fusiona con la membrana del endosoma liberando la cápsida en la el citosol
3. Virus de la Polio (Poliovirus) sin envoltura, la cápside es reconocida por la membrana por endocitosis. Cuando llega al endosoma abre un poro por donde inyecta el material genético al endosoma.
4. Adenovirus (virus sin envoltura) utiliza una estrategia más complicada, es reconocido por receptores específicos de la membrana por endocitosis, en el endosoma se rompen las membranas liberándose el contenido del endosoma al citoplasma. La cápside finalmente se une a un poro nuclear y libera su genoma el ADN directamente en el núcleo.

3. Adquisición de una envoltura vírica.

La bicapa lipídica que rodea a la cápside viral se deriva directamente de la membrana plasmática de la célula huésped. En contraste, las proteínas en esta bicapa lipídica (en verde) están codificadas por el genoma viral.